Dynamics of geckos running vertically

Author:

Autumn K.1,Hsieh S. T.2,Dudek D. M.2,Chen J.2,Chitaphan C.2,Full R. J.2

Affiliation:

1. Department of Biology, Lewis & Clark College, Portland, OR 97219-7899,USA

2. Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA

Abstract

SUMMARYGeckos with adhesive toe pads rapidly climb even smooth vertical surfaces. We challenged geckos (Hemidactylus garnotii) to climb up a smooth vertical track that contained a force platform. Geckos climbed vertically at up to 77 cm s-1 with a stride frequency of 15 Hz using a trotting gait. During each step, whole body fore–aft, lateral and normal forces all decreased to zero when the animal attached or detached its toe pads. Peak fore–aft force was twice body weight at mid-step. Geckos climbed at a constant average velocity without generating decelerating forces on their center of mass in the direction of motion. Although mass-specific mechanical power to climb was ten times the value expected for level running, the total mechanical energy of climbing was only 5–11% greater than the potential energy change. Fore- and hindlegs both pulled toward the midline, possibly loading the attachment mechanisms. Attachment and detachment of feet occupied 13% and 37% of stance time, respectively. As climbing speed increased, the absolute time required to attach and detach did not decrease, suggesting that the period of fore–aft force production might be constrained. During ascent, the forelegs pulled toward, while hindlegs pushed away from the vertical surface, generating a net pitching moment toward the surface to counterbalance pitch-back away from the surface. Differential leg function appears essential for effective vertical as well as horizontal locomotion.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 317 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3