Coordinating limbs and spine: (Pareto-)optimal locomotion in theory, in vivo, and in robots

Author:

Rockenfeller Robert,Cieri Robert L.,Schultz Johanna T.,Maag Robin,Clemente Christofer J.

Abstract

AbstractAmong vertebrates, patterns of movement vary considerably, from the lateral spine-based movements of fish and salamanders to the predominantly limb-based movements of mammals. Yet, we know little about why these changes may have occurred in the course of evolution. Lizards form an interesting intermediate group where locomotion appears to be driven by both motion of their limbs and lateral spinal undulation. To understand the evolution and relative advantages of limb versus spine locomotion, we developed an empirically informed mathematical model as well as a robotic model and compared in silico predictions to in-vivo data from running and climbing lizards. Our mathematical model showed that, if limbs were allowed to grow to long lengths, movements of the spine did not enable longer strides, since spinal movements reduced the achievable range of motion of the limbs before collision. Yet, in-vivo data show lateral spine movement is widespread among a diverse group of lizards moving on level ground or climbing up and down surfaces. Our climbing robotic model was able to explain this disparity, showing that increased movement of the spine was energetically favourable, being associated with a reduced cost of transport. Our robot model also revealed that stability, as another performance criterion, decreased with increased spine and limb range of motion—detailing the trade-off between speed and stability. Overall, our robotic model found a Pareto-optimal set of strides—when considering speed, efficiency, and stability—requiring both spine and limb movement, which closely agreed with movement patterns among lizards. Thus we demonstrate how robotic models, in combination with theoretical considerations, can reveal fundamental insights into the evolution of movement strategies among a broad range of taxa.

Funder

Deutscher Akademischer Austauschdienst

Australian Research Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3