Diet mediates thermal performance traits: implications for marine ectotherms

Author:

Hardison Emily A.1ORCID,Kraskura Krista1ORCID,Van Wert Jacey1ORCID,Nguyen Tina1,Eliason Erika J.1ORCID

Affiliation:

1. Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA

Abstract

ABSTRACT Thermal acclimation is a key process enabling ectotherms to cope with temperature change. To undergo a successful acclimation response, ectotherms require energy and nutritional building blocks obtained from their diet. However, diet is often overlooked as a factor that can alter acclimation responses. Using a temperate omnivorous fish, opaleye (Girella nigricans), as a model system, we tested the hypotheses that (1) diet can impact the magnitude of thermal acclimation responses and (2) traits vary in their sensitivity to both temperature acclimation and diet. We fed opaleye a simple omnivorous diet (ad libitum Artemia sp. and Ulva sp.) or a carnivorous diet (ad libitum Artemia sp.) at two ecologically relevant temperatures (12 and 20°C) and measured a suite of whole-animal (growth, sprint speed, metabolism), organ (cardiac thermal tolerance) and cellular-level traits (oxidative stress, glycolytic capacity). When opaleye were offered two diet options compared with one, they had reduced cardiovascular thermal performance and higher standard metabolic rate under conditions representative of the maximal seasonal temperature the population experiences (20°C). Further, sprint speed and absolute aerobic scope were insensitive to diet and temperature, while growth was highly sensitive to temperature but not diet, and standard metabolic rate and maximum heart rate were sensitive to both diet and temperature. Our results reveal that diet influences thermal performance in trait-specific ways, which could create diet trade-offs for generalist ectotherms living in thermally variable environments. Ectotherms that alter their diet may be able to regulate their performance at different environmental temperatures.

Funder

Hellman Family Faculty Fellowship

University of California, Santa Barbara

National Science Foundation

University of California

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3