Leg Coordination in the Stick Insect Carausius Morosus: Effects of Cutting Thoracic Connectives

Author:

DEAN JEFFREY1

Affiliation:

1. Abteilung für Biokybernetik und Theoretische Biologie, Universität Bielefeld Postfach 8640, D-4800 Bielefeld 1, FRG

Abstract

Behavioral studies of stick insects have identified six mechanisms which coordinate leg stepping. All six are active between ipsilateral leg pairs. As a first step towards locating the neurons mediating these interactions, the present study describes the effects of cutting one of the paired thoracic connectives. After the operation the following changes in step coordination occurred. The ipsilateral leg immediately caudal to the severed connective generally showed weak stepping. In free-walking animals it often remained near its posterior extreme position and dragged along the substratum. During supported walking, rhythmic stepping was common, but the swing phase of this leg was longer and both temporal and spatial coordination were disturbed. When the leg made a pause it usually stopped in the air near the end of its swing movement. During steady walking, the operation interrupted information from the adjacent forward leg normally used to guide the end-point of the swing or to signal errors in leg placement and elicit a correctivetreading-on-tarsus reflex. It also interrupted position information affecting the start of the swing. For the leg rostral to the cut, the inhibition during the swing of the posterior leg and the excitation when the latter started its retraction were both interrupted. These results indicate that all six ipsilateral coordination mechanisms are primarily mediated by the ipsilateral connective. In addition, the data show that contralateral coordination within the segmental ganglion is strongest for the front legs, weaker for the rear legs, and not discernible for the middle legs.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3