Body temperature depression and peripheral heat loss accompany the metabolic and ventilatory responses to hypoxia in low and high altitude birds

Author:

Scott Graham R.1,Cadena Viviana2,Tattersall Glenn J.2,Milsom William K.1

Affiliation:

1. Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4,Canada

2. Department of Biological Sciences, Brock University, St Catherines, ON, L25 3A1, Canada

Abstract

SUMMARYThe objectives of this study were to compare the thermoregulatory,metabolic and ventilatory responses to hypoxia of the high altitude bar-headed goose with low altitude waterfowl. All birds were found to reduce body temperature (Tb) during hypoxia, by up to 1–1.5°C in severe hypoxia. During prolonged hypoxia, Tb stabilized at a new lower temperature. A regulated increase in heat loss contributed to Tb depression as reflected by increases in bill surface temperatures (up to 5°C) during hypoxia. Bill warming required peripheral chemoreceptor inputs, since vagotomy abolished this response to hypoxia. Tb depression could still occur without bill warming, however, because vagotomized birds reduced Tb as much as intact birds. Compared to both greylag geese and pekin ducks, bar-headed geese required more severe hypoxia to initiate Tb depression and heat loss from the bill. However, when Tb depression or bill warming were expressed relative to arterial O2 concentration (rather than inspired O2) all species were similar; this suggests that enhanced O2 loading,rather than differences in thermoregulatory control centres, reduces Tb depression during hypoxia in bar-headed geese. Correspondingly, bar-headed geese maintained higher rates of metabolism during severe hypoxia (7% inspired O2), but this was only partly due to differences in Tb. Time domains of the hypoxic ventilatory response also appeared to differ between bar-headed geese and low altitude species. Overall, our results suggest that birds can adjust peripheral heat dissipation to facilitate Tb depression during hypoxia,and that bar-headed geese minimize Tb and metabolic depression as a result of evolutionary adaptations that enhance O2transport.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3