Affiliation:
1. Biodiversity Research Center Academia Sinica Taipei Taiwan
2. Department of Natural Resources and Environmental Studies National Dong Hwa University Hualien Taiwan
3. Division of Zoology Endemic Species Research Institute Nantou Taiwan
4. Kunming Institute of Zoology Chinese Academy of Sciences Kunming Yunnan China
Abstract
AbstractOrganisms often acquire physiological and morphological modifications to conquer ecological challenges when colonizing new environments which lead to their adaptive evolution. However, deciphering the genomic mechanism of ecological adaptation is difficult because ecological environments are often too complex for straightforward interpretation. Thus, we examined the adaptation of a widespread songbird—the rufous‐capped babbler (Cyanoderma ruficeps)—to a relatively simple system: distinct environments across elevational gradients on the mountainous island of Taiwan. We focused on the genomic sequences of 43 birds from five populations to show that the Taiwan group split from its sister group in mainland China around 1–2 million years ago (Ma) and colonized the montane habitats of Taiwan at least twice around 0.03–0.22 Ma. The montane and lowland Taiwan populations diverged with gene flow between them, suggesting strong selection associated with different elevations. We found that the montane babblers had smaller beaks than the lowland ones, consistent with Allen's rule, and identified candidate genes—COL9A1 and SOX11—underlying the beak size changes. We also found that altitudinally divergent mutations were mostly located in noncoding regions and tended to accumulate in chromosomal inversions and autosomes. The altitudinally divergent mutations might regulate genes related to haematopoietic, metabolic, immune, auditory and vision functions, as well as cerebrum morphology and plumage development. The results reveal the genomic bases of morphological and physiological adaptation in this species to the low temperature, hypoxia and high UV light environment at high elevation. These findings improve our understanding of how ecological adaptation drives population divergence from the perspective of genomic architecture.
Funder
Ministry of Science and Technology, Taiwan
Subject
Genetics,Ecology, Evolution, Behavior and Systematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献