Hadean tectonics: Insights from machine learning

Author:

Chen Guoxiong1ORCID,Kusky Timothy12ORCID,Luo Lei1,Li Quanke1,Cheng Qiuming13ORCID

Affiliation:

1. 1State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China

2. 2Center for Global Tectonics, Badong National Observatory and Research Station for Geohazards, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China

3. 3School of Earth Science and Engineering, Sun Yat-sen University, Zhuhai, 51900, China

Abstract

Abstract The tectonic affiliations and magma compositions that formed Earth’s earliest crusts remain hotly debated. Previous efforts toward this goal have relied heavily on determining the provenance of Hadean zircons using low-dimensional discriminant diagrams developed from Phanerozoic samples, which are inadequate for capturing systematic differences without considering secular changes in zircon composition. Here, we developed high-dimensional machine learning (ML) approaches using zircon chemistry data (spanning 19 elements over 4.0 b.y.) to characterize zircons that crystallized in some typical tectonic settings (e.g., arcs, plume-related hotspots, and rifts) and from either igneous (I-type) or sedimentary (S-type) magmas. The proposed ML method, from a nonuniformitarian perspective, identifies the tectonic settings and granitoid types of given zircons (from Archean to Phanerozoic) at a higher prediction accuracy of >89% compared to ∼66%–82% for traditional discriminant diagrams (e.g., U/Yb vs. Y and rare earth elements (REE) + Y vs. P). The ML-based discriminators depend on the systematic differences in zircon chemistry, notably, significant differences in U, Th, and heavy REE for tectonic settings, and P and Hf for I- and S-type magmas. Application of the trained ML models to Hadean zircons from Jack Hills, Australia, suggests that these zircons were mainly crystallized in continental arc–forming magmas (90%) with 45% belonging to S-type melts. This result provides clear evidence of sediment recycling associated with subduction activity in the Hadean.

Publisher

Geological Society of America

Subject

Geology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3