Local Singularity Spectrum: An Innovative Graphical Approach for Analyzing Detrital Zircon Geochronology Data in Provenance Analysis

Author:

Wang Wenlei1ORCID,Pei Yingru1,Cheng Qiuming2ORCID,Wang Wenjun3

Affiliation:

1. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China

2. State Key Lab of Geological Processes and Mineral Resources, China University of Geosciences (Beijing), Beijing 100083, China

3. Henan Fourth Geological Exploration Institute Co., Ltd., Zhengzhou 450001, China

Abstract

Detrital zircon geochronology plays a crucial role in provenance analysis, serving as one of the fundamental strategies. The age spectrum of detrital zircons collected from the sedimentary unit of interest is often compared or correlated with that of potential source terranes. However, biases in the age data can arise due to factors related to detrital sampling, analysis techniques, and nonlinear geological mechanisms. The current study reviewed two sets of detrital zircon datasets established in 2011 and 2021 to discuss the origins of the Tibetan Plateau. These datasets collected from different media effectively demonstrate a progressive understanding of provenance affinity among the main terranes on the Tibetan Plateau. This highlights issues regarding weak and unclear temporal connections identified through analyzing the age spectrum for provenance analysis. Within this context, a local singularity analysis approach is currently employed to address issues associated with unclear and weak provenance information by characterizing local variations in nonlinear behaviors and enhancing detection sensitivity towards subtle anomalies. This new graphical approach effectively quantifies temporal variations in detrital zircon age populations and enhances identification of weak provenance information that may not be readily apparent on conventional age spectra.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3