Core complex fault rocks of the Silurian to Devonian Keisarhjelmen detachment in NW Spitsbergen

Author:

Maher* Harmon1,Braathen* Alvar2,Ganerød* Morgan3,Osmundsen* Per Terje4,Redfield* Tim3,Myhre* Per Inge5,Serck* Christopher2,Parcher* Sara1

Affiliation:

1. Department of Geography & Geology, University of Nebraska at Omaha, Omaha, Nebraska 68182-0199, USA

2. Department of Geoscience, University of Oslo, N-0316 Oslo, Norway

3. Geological Survey of Norway, N-7491 Trondheim, Norway

4. Department of Geoscience & Petroleum, Norwegian University of Science & Technology (NTNU), N-7491 Trondheim, Norway

5. Norwegian Polar Institute, N-9296 Tromsø, Norway

Abstract

ABSTRACT A Silurian–Devonian metamorphic core complex has recently been recognized in northwest Spitsbergen, on the northwest corner of the Barents Shelf at the junction between the Atlantic and Arctic oceans. The associated Keisarhjelmen detachment, a major, ductile-brittle fault zone, is 200–500 m thick and has a map trace >150 km. A top-to-the-north transport direction is parallel to the axis of a large-scale, shallowly north-plunging, detachment corrugation. This detachment zone separates overlying faulted Silurian–Devonian aged cover strata from underlying migmatitic rocks in the core. The detachment shows a diverse array of fault and metamorphic rocks with structural ascent, ranging from sheared migmatite, mylonite, ultramylonite, foliated cataclasite, pseudotachylite, and breccia. Footwall post-kinematic granitic intrusions occurred shortly prior to, and likely during, deposition of the older cover strata. Variably deformed, syn-kinematic granitic sheets and veins within the detachment zone are considered coeval. Thin sections show significant grain size reduction, porphyroclasts, and well-developed composite fault surfaces. Relict garnet sigma porphyroclasts associated with chlorite and sericite indicate retrogression. Feldspar porphyroclasts show significant sericite alteration, undulose extinction and limited recrystallization low in the detachment, and brittle deformation throughout. Quartz deformation textures and grain size vary considerably within and between samples. Deformation during retrogression continued into the brittle realm with the development of thick foliated cataclasites, fault breccias, and local pseudotachylites concentrated at the top of the detachment. Biotite in particular shows grain size reduction, concentration along C-surfaces, and shredding and redistribution, suggesting it played a significant role in both ductile and brittle faulting. Veins, micro-veins, and fluid inclusion planes are ubiquitous throughout the detachment, indicating substantial fault-related fluid flow. Given existing geochronologic and P-T (pressure-temperature) data from the basement rocks of the area, the kinematics, retrogression, and ductile-brittle transition are consistent with exhumation of a core complex developing by orogen-parallel extension associated with transtension during the Late Silurian and Early to Middle Devonian in northwest Spitsbergen. Remaining questions include how this core complex connects with coeval plate-scale strike-slip faults in Svalbard, and its relationship to mainland Norwegian core complexes and Devonian basins to the south.

Publisher

Geological Society of America

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3