Devonian–Carboniferous extension and Eurekan inversion along an inherited WNW–ESE-striking fault system in Billefjorden, Svalbard

Author:

Koehl Jean-Baptiste P.ORCID,Allaart Lis,Noormets Riko

Abstract

Background: The Billefjorden area in central Spitsbergen hosts thick Lower–lowermost Upper Devonian, late–post-Caledonian collapse deposits presumably deformed during the Late Devonian Svalbardian Orogeny. These rocks are juxtaposed against Proterozoic basement rocks along the Billefjorden Fault Zone and are overlain by uppermost Devonian–early Permian deposits of the Billefjorden Trough, a N–S-trending Carboniferous rift basin bounded by the Billefjorden Fault Zone. Methods: We interpreted seismic reflection (also depth-converted), bathymetric, and exploration well data. Results: The data show abundant Early Devonian, WNW–ESE-striking (oblique-slip) normal faults segmenting the Billefjorden Trough, and a gradual decrease in tectonic activity from the Early Devonian (collapse phase) to early Permian (post-rift phase). Early Devonian–Middle Pennsylvanian WNW–ESE-striking faults were mildly reactivated and overprinted and accommodated strain partitioning and decoupling in the early Cenozoic. This resulted in intense deformation of Lower Devonian sedimentary rocks and in the formation of bedding-parallel décollements, e.g., between the Lower Devonian Wood Bay and the uppermost Pennsylvanian–lowermost Permian Wordiekammen formations. This suggests that intense deformation within Devonian rocks in Dickson Land can be explained by Eurekan deformation alone. Eurekan deformation also resulted in the formation of WNW–ESE- and N–S- to NNE–SSW-trending, kilometer-wide, open folds such as the Petuniabukta Syncline, and in inversion and/or overprinting of Early Devonian to Early Pennsylvanian normal faults by sinistral-reverse Eurekan thrusts. WNW–ESE-striking faults merge at depth with similarly trending and dipping ductile shear zone fabrics in Proterozoic basement rocks, which likely formed during the Timanian Orogeny. Conclusions: A NNE-dipping shear zone, which is part of a large system of Timanian thrusts in the Barents Sea, controlled the formation of WNW–ESE-striking Devonian–Mississippian normal faults and syn-tectonic sedimentary rocks in Billefjorden. Eurekan strain partitioning and decoupling suggest that the Svalbardian Orogeny did not occur in Svalbard.

Funder

Horizon 2020 Framework Programme

Research Council of Norway

Tromsø Forskningsstiftelse

Publisher

F1000 Research Ltd

Subject

Multidisciplinary

Reference150 articles.

1. Fasies analyse av Undre Karbonske kullførende sedimenter, Billefjorden, Spitsbergen.;R Aakvik,1981

2. Depositional evolution of the Upper Carboniferous - Lower Permian Wordiekammen carbonate platform, Nordfjorden High, central Spitsbergen, Arctic Norway.;M Ahlborn;Norwegian Journal of Geology.,2015

3. Drumlins in the Nordenskiöldbreen forefield, Svalbard.;L Allaart;GFF.,2018

4. Basin inversion and thin-skinned deformation associated with the Tertiary transpressional west Spitsbergen Orogen.;A Andresen;Proceedings of the International Conference on Arctic Margins. Thurston, D. K. & Fujita, K. (eds.), Anchorage, Alaska, USA September 1992.,1994

5. Along-strike changes in fault array and rift basin geometry of the Carboniferous Billefjorden Trough, Svalbard, Norway.;K Bælum;Tectonophysics.,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3