Detrital zircon U-Pb-Hf isotope signatures of Old Red Sandstone strata constrain the Silurian to Devonian paleogeography, tectonics, and crustal evolution of the Svalbard Caledonides

Author:

Beranek Luke P.1,Gee David G.2,Fisher Christopher M.3

Affiliation:

1. Department of Earth Sciences, Memorial University of Newfoundland, 9 Arctic Avenue, St. John’s, Newfoundland and Labrador A1B 3X5, Canada

2. Department of Earth Sciences, Uppsala University, Villavägen 16, 752 36 Uppsala, Sweden

3. School of the Environment, Washington State University, P.O. Box 642812, Pullman, Washington 99164-2812, USA

Abstract

Abstract Detrital zircon provenance studies of Mesoproterozoic basement and overlying Old Red Sandstone strata in northwestern Svalbard, Arctic Norway, were conducted to test competing models for Caledonian paleogeography and tectonics and constrain the magnitude of orogen-parallel, Silurian to Devonian strike-slip faulting following the Laurentia-Baltica collision. Mesoproterozoic basement strata, cut by earliest Tonian orthogneiss units, mostly yielded 1640–1050 Ma detrital zircon populations that are consistent with pre-Caledonian locations near northeast Greenland. Basal Old Red Sandstone deposits that filled pull-apart basins showed basement-derived signatures but also contained 530–450 Ma and 670–570 Ma populations with slightly subchondritic (ε Hf[t] = –4 to –2) Hf isotope compositions. These results are consistent with late Silurian–Early Devonian proximity to the northeast Greenland Caledonides and Pearya, which indicates limited (<200 km) strike-slip displacement of Svalbard’s Caledonian allochthons after the Laurentia-Baltica collision. Previously interpreted connections between the Svalbard Old Red Sandstone and British Caledonides are incompatible with these detrital zircon results. Lochkovian Old Red Sandstone strata were deposited after a second episode of strike-slip faulting and show recycled basement signatures. The lack of 530–450 Ma and 670–570 Ma populations suggests that the second deformation episode reorganized local drainages. Pragian–Givetian strata have provenance from local Old Red Sandstone sources that were uplifted during a third and final episode of strike-slip deformation. The results indicate that northern Caledonian (Svalbard, Pearya) crustal evolution was characterized by the reworking of Mesoproterozoic–Paleoproterozoic sources and mostly <600 m.y. crustal residence times, whereas the southern Caledonides (UK, Ireland) show evidence for the reworking of older basement and mostly >600 m.y. crustal residence times.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3