Skin Cancer Classification Through Quantized Color Features and Generative Adversarial Network

Author:

Maiti Ananjan1,Chatterjee Biswajoy2,Santosh K. C.3ORCID

Affiliation:

1. Techno International Newtown, Kolkata, India

2. University of Engineering and Management (UEM), India

3. University of South Dakota, USA

Abstract

Early interpretation of skin cancer through computer-aided diagnosis (CAD) tools reduced the intricacy of the treatments as it can attain a 95% recovery rate. To frame up with computer-aided diagnosis system, scientists adopted various artificial intelligence (AI) designed to receive the best classifiers among these diverse features. This investigation covers traditional color-based texture, shape, and statistical features of melanoma skin lesion and contrasted with suggested methods and approaches. The quantized color feature set of 4992 traits were pre-processed before training the model. The experimental images have combined images of naevus (1500), melanoma (1000), and basal cell carcinoma (500). The proposed methods handled issues like class imbalanced with generative adversarial networks (GAN). The recommended color quantization method with synthetic data generation increased the accuracy of the popular machine learning models as it gives an accuracy of 97.08% in random forest. The proposed model preserves a decent accuracy with KNN, adaboost, and gradient boosting.

Publisher

IGI Global

Subject

Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3