Affiliation:
1. Jahangirnagar University, Dhaka, Bangladesh
2. Bangladesh University of Health Sciences, Dhaka, Bangladesh
3. Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
Abstract
Skin cancer is a significant health concern worldwide, and early and accurate diagnosis plays a crucial role in improving patient outcomes. In recent years, deep learning models have shown remarkable success in various computer vision tasks, including image classification. In this research study, we introduce an approach for skin cancer classification using vision transformer, a state-of-the-art deep learning architecture that has demonstrated exceptional performance in diverse image analysis tasks. The study utilizes the HAM10000 dataset; a publicly available dataset comprising 10,015 skin lesion images classified into two categories: benign (6705 images) and malignant (3310 images). This dataset consists of high-resolution images captured using dermatoscopes and carefully annotated by expert dermatologists. Preprocessing techniques, such as normalization and augmentation, are applied to enhance the robustness and generalization of the model. The vision transformer architecture is adapted to the skin cancer classification task. The model leverages the self-attention mechanism to capture intricate spatial dependencies and long-range dependencies within the images, enabling it to effectively learn relevant features for accurate classification. Segment Anything Model (SAM) is employed to segment the cancerous areas from the images; achieving an IOU of 96.01% and Dice coefficient of 98.14% and then various pretrained models are used for classification using vision transformer architecture. Extensive experiments and evaluations are conducted to assess the performance of our approach. The results demonstrate the superiority of the vision transformer model over traditional deep learning architectures in skin cancer classification in general with some exceptions. Upon experimenting on six different models, ViT-Google, ViT-MAE, ViT-ResNet50, ViT-VAN, ViT-BEiT, and ViT-DiT, we found out that the ML approach achieves 96.15% accuracy using Google’s ViT patch-32 model with a low false negative ratio on the test dataset, showcasing its potential as an effective tool for aiding dermatologists in the diagnosis of skin cancer.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献