Residual Generative Adversarial Adaptation Network For The Classification Of Melanoma

Author:

S. Gowthami ,R. Harikumar

Abstract

The capability of recognizing skin cancer in its earliest stages has the potential to be a component that saves lives. It is of the utmost importance to devise an autonomous technique that can be relied upon for accurate melanoma detection using image analysis. In this paper, Generative adversarial network (GAN) with suitable preprocessing is used to classify the labels for the detection of melanoma skin types. The simulation is run to evaluate the effectiveness of the model about several performance measures, such as accuracy, precision, recall, f-measure, percentage error, Dice coefficient, and Jaccard index. These are all performance measures that are taken into consideration. These metrics for measuring achievement are as follows: The results of the simulations make it exceedingly clear that the proposed TE-SAAGAN is more effective than the existing GAN protocols when it comes to recognizing the test images.

Publisher

Agora University of Oradea

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3