An Abnormal External Link Detection Algorithm Based on Multi-Modal Fusion

Author:

Wu Zhiqiang1ORCID

Affiliation:

1. Henan Police College, China

Abstract

Website link detection is an important means to ensure the security of the external chain. In the past, it was mainly realized through blacklisting and feature engineering-based machine learning, which has the problems of slow detection speed and weak model generalization ability. The development of neural networks has brought a new solution to the security detection of the external chain of the website. To address the performance bottleneck caused by the variable content length of web pages, this article introduces an innovative approach: a website external link security detection algorithm based on multi-modal fusion. It extracts text, dynamic script, and image features separately, and constructs a deep fusion model that combines these multi-modal features. Compared with the previous research results, the proposed method is superior to the traditional single-mode method, and can quickly and accurately identify malicious web pages. The accuracy and F1 value are improved by 2.7% and 0.026.

Publisher

IGI Global

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An IIoT Temporal Data Anomaly Detection Method Combining Transformer and Adversarial Training;International Journal of Information Security and Privacy;2024-05-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3