Automatic Building Extraction on Satellite Images Using Unet and ResNet50

Author:

Alsabhan Waleed1ORCID,Alotaiby Turky1ORCID

Affiliation:

1. King Abdulaziz City for Science and Technology, National Center for Data Analytics and Artificial Intelligence, P.O. Box 6086, Riyadh 11442, Saudi Arabia

Abstract

Recently, settlement planning and replanning process are becoming the main problem in rapidly growing cities. Unplanned urban settlements are quite common, especially in low-income countries. Building extraction on satellite images poses another problem. The main reason for the problem is that manual building extraction is very difficult and takes a lot of time. Artificial intelligence technology, which has increased significantly today, has the potential to provide building extraction on high-resolution satellite images. This study proposes the differentiation of buildings by image segmentation on high-resolution satellite images with U-net architecture. The open-source Massachusetts building dataset was used as the dataset. The Massachusetts building dataset includes residential buildings of the city of Boston. It was aimed to remove buildings in the high-density city of Boston. In the U-net architecture, image segmentation is performed with different encoders and the results are compared. In line with the work done, 82.2% IoU accuracy was achieved in building segmentation. A high result was obtained with an F1 score of 0.9. A successful image segmentation was achieved with 90% accuracy. This study demonstrated the potential of automatic building extraction with the help of artificial intelligence in high-density residential areas. It has been determined that building mapping can be achieved with high-resolution antenna images with high accuracy achieved.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3