Hybridizing Deep Neural Networks and Machine Learning Models for Aerial Satellite Forest Image Segmentation

Author:

Kwenda Clopas1ORCID,Gwetu Mandlenkosi2ORCID,Fonou-Dombeu Jean Vincent1ORCID

Affiliation:

1. School of Mathematics, Statistics and Computer Science, University of KwaZulu Natal, Pietermaritzburg 3209, South Africa

2. Department of Industrial Engineering, University of Stellenbosch, Stellenbosch 7600, South Africa

Abstract

Forests play a pivotal role in mitigating climate change as well as contributing to the socio-economic activities of many countries. Therefore, it is of paramount importance to monitor forest cover. Traditional machine learning classifiers for segmenting images lack the ability to extract features such as the spatial relationship between pixels and texture, resulting in subpar segmentation results when used alone. To address this limitation, this study proposed a novel hybrid approach that combines deep neural networks and machine learning algorithms to segment an aerial satellite image into forest and non-forest regions. Aerial satellite forest image features were first extracted by two deep neural network models, namely, VGG16 and ResNet50. The resulting features are subsequently used by five machine learning classifiers including Random Forest (RF), Linear Support Vector Machines (LSVM), k-nearest neighbor (kNN), Linear Discriminant Analysis (LDA), and Gaussian Naive Bayes (GNB) to perform the final segmentation. The aerial satellite forest images were obtained from a deep globe challenge dataset. The performance of the proposed model was evaluated using metrics such as Accuracy, Jaccard score index, and Root Mean Square Error (RMSE). The experimental results revealed that the RF model achieved the best segmentation results with accuracy, Jaccard score, and RMSE of 94%, 0.913 and 0.245, respectively; followed by LSVM with accuracy, Jaccard score and RMSE of 89%, 0.876, 0.332, respectively. The LDA took the third position with accuracy, Jaccard score, and RMSE of 88%, 0.834, and 0.351, respectively, followed by GNB with accuracy, Jaccard score, and RMSE of 88%, 0.837, and 0.353, respectively. The kNN occupied the last position with accuracy, Jaccard score, and RMSE of 83%, 0.790, and 0.408, respectively. The experimental results also revealed that the proposed model has significantly improved the performance of the RF, LSVM, LDA, GNB and kNN models, compared to their performance when used to segment the images alone. Furthermore, the results showed that the proposed model outperformed other models from related studies, thereby, attesting its superior segmentation capability.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3