An IIoT Temporal Data Anomaly Detection Method Combining Transformer and Adversarial Training

Author:

Tian Yuan1ORCID,Wang Wendong1,He Jingyuan1

Affiliation:

1. Yan'an University, China

Abstract

The existing Industrial Internet of Things (IIoT) temporal data analysis methods often suffer from issues such as information loss, difficulty balancing spatial and temporal features, and being affected by training data noise, which can lead to varying degrees of reduced model accuracy. Therefore, a new anomaly detection method was proposed, which integrated Transformer and adversarial training. Firstly, a bidirectional spatiotemporal feature extraction module was constructed by combining Graph Attention Networks (GAT) and Bidirectional Gated Recurrent Unit (BiGRU), which can simultaneously extract spatial and temporal features. Then, by combining multi-scale convolution with Long Short-Term Memory (LSTM), multi-scale contextual information was captured. Finally, an improved Transformer was used to fuse multi-dimensional features, combined with an adversarial-trained variational autoencoder to calculate the anomalies of the input data. This method outperforms other comparison models by conducting experiments on four publicly available datasets.

Publisher

IGI Global

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Multi-Scale Temporal Feature Extraction Approach for Network Traffic Anomaly Detection;International Journal of Information Security and Privacy;2024-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3