An Introduction to Deep Convolutional Neural Networks With Keras

Author:

Muhammad Wazir1,Ullah Irfan2,Ashfaq Mohammad3

Affiliation:

1. Electrical Engineering Department, BUET, Khuzdar, Pakistan

2. Department of Electrical Engineering, Chulalongkorn University, Bangkok, Thailand

3. School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India

Abstract

Deep learning (DL) is the new buzzword for researchers in the research area of computer vision that unlocked the doors to solving complex problems. With the assistance of Keras library, machine learning (ML)-based DL and various complicated or unresolved issues such as face recognition and voice recognition might be resolved easily. This chapter focuses on the basic concept of Keras-based framework DL library to handle the different real-life problems. The authors discuss the codes of previous libraries and same code run on Keras library and assess the performance on Google Colab Cloud Graphics Processing Units (GPUs). The goal of this chapter is to provide you with the newer concept, algorithm, and technology to solve the real-life problems with the help of Keras framework. Moreover, they discuss how to write the code of standard convolutional neural network (CNN) architectures using Keras libraries. Finally, the codes of validation and training data set to start the training procedure are explored.

Publisher

IGI Global

Reference37 articles.

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., . . . Devin, M. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467

2. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., . . . Isard, M. (2016). Tensorflow: A system for large-scale machine learning. Paper presented at the 12th {USENIX} Symposium on Operating Systems Design and Implementation.

3. Anwar, S., Huynh, C. P., & Porikli, F. (2017). Chaining identity mapping modules for image denoising. arXiv preprint arXiv:1712.02933

4. Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3