Abstract
The main target of Single image super-resolution is to recover high-quality or high-resolution image from degraded version of low-quality or low-resolution image. Recently, deep learning-based approaches have achieved significant performance in image super-resolution tasks. However, existing approaches related with image super-resolution fail to use the features information of low-resolution images as well as do not recover the hierarchical features for the final reconstruction purpose. In this research work, we have proposed a new architecture inspired by ResNet and Xception networks, which enable a significant drop in the number of network parameters and improve the processing speed to obtain the SR results. We are compared our proposed algorithm with existing state-of-the-art algorithms and confirmed the great ability to construct HR images with fine, rich, and sharp texture details as well as edges. The experimental results validate that our proposed approach has robust performance compared to other popular techniques related to accuracy, speed, and visual quality.
Publisher
Public Library of Science (PLoS)
Reference90 articles.
1. Faster R-CNN: towards real-time object detection with region proposal networks;S Ren;IEEE transactions on pattern analysis and machine intelligence,2016
2. Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: Unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 779–788.
3. He K, Gkioxari G, Dollár P, Girshick R. Mask r-cnn. In: Proceedings of the IEEE international conference on computer vision; 2017. p. 2961–2969.
4. Segnet: A deep convolutional encoder-decoder architecture for image segmentation;V Badrinarayanan;IEEE transactions on pattern analysis and machine intelligence,2017
5. Imagenet classification with deep convolutional neural networks;A Krizhevsky;Advances in neural information processing systems,2012
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献