A zero-shot fault attribute transfer learning method for compound fault diagnosis of power circuit breakers

Author:

Yang QiuyuORCID,Lin Yuyi,Ruan Jiangjun

Abstract

Abstract Diagnosis of compound mechanical faults for power circuit breakers (CBs) is a challenging task. In traditional fault diagnosis methods, however, all fault types need to be collected in advance for the training of diagnosis model. Such processes have poor generalization capabilities for industrial scenarios with no or few data when faced with new faults. In this study, we propose a novel zero-shot learning method named DSR-AL to address this problem. An unsupervised neural network, namely, depthwise separable residual convolutional neural network, is designed to directly learn features from 3D time-frequency images of CB vibration signals. Then we build fault attribute learners (ALs), for transferring fault knowledge to the target faults. Finally, the ALs are used to predict the attribute vector of the target faults, thus realizing the recognition of previously unseen faults. The orthogonal experiments are designed and conducted on real industrial switchgear to validate the effectiveness of the proposed diagnosis framework. Results show that it is feasible to diagnose target faults without using their samples for training, which greatly saves the costs of collecting fault samples. This will help to accurately identify the various faults that may occur during CB’s life cycle, and facilitate the application of intelligent fault diagnosis system.

Funder

National Natural Science Foundation of China - State Grid Corporation Joint Fund for Smart Grid

Natural Science Foundation of Fujian Province

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3