Deep transfer learning CNN based approach for COVID-19 detection

Author:

et al. Muhammad,

Abstract

Recently, the novel coronavirus (Covid-19) and its different variants have spread rapidly across the world. Early-stage detection of COVID-19 is a challenging task due to the limited availability of Covid testing kits to the public. Conventionally, reverse transcription-polymerase chain reaction (RT-PCR) is the reliable test for the detection of COVID-19 which is time-consuming and costly. The aim of this work is to identify the COVID-19 symptoms with the help of a deep learning algorithm using chest X-Ray images. In order to improve the quality of chest X-Ray images, authors have further modified the pre-trained model with some extra CNN layers, such as the first layer is the average pooling layer and the other two are dense layers followed by ReLU with softmax activation function. The experimental results have been carried out on publicly available chest X-Ray images of COVID-19 to mark COVID-19 patients as positive and negative datasets. For evaluation purpose, we have used benchmark of pre-trained models such as VGG-16 (Visual Geometry Group), VGG19, Xception, ResNet152, ResNet152v2, ResNet101, ResNet101v2, DenseNet201, DenseNet169 and DenseNet121. On the benchmark datasets, viz. COVID-19 X-Ray images, an average improvement in terms of training/validation accuracy, precision, recall, and F1-scores scores were 95%, 94%, 99/88%, 99/88%, and 93/92% respectively. The results provide sufficient evidence that deep learning can be used efficiently for the detection of COVID-19 symptoms.

Publisher

International Journal of Advanced and Applied Sciences

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Learning Model for COVID-19 Classification Using Fine Tuned ResNet50 on Chest X-Ray Images;Machine Learning Research;2024-05-10

2. Advancing COVID-19 Prediction with Deep Learning Models: A Review;2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG);2024-04-02

3. Explainable COVID-19 Detection Based on Chest X-rays Using an End-to-End RegNet Architecture;Viruses;2023-06-06

4. IRMIRS: Inception-ResNet-Based Network for MRI Image Super-Resolution;Computer Modeling in Engineering & Sciences;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3