Web Data Quality

Author:

Zaveri Amrapali1,Maurino Andrea2,Equille Laure-Berti3

Affiliation:

1. Institüt für Informatik, Universität Leipzig, Leipzig, Germany

2. Department of Computer Science, University of Milano Bicocca, Milano, Italy

3. Qatar Computing Research Institute, Doha, Qatar

Abstract

The standardization and adoption of Semantic Web technologies has resulted in an unprecedented volume of data being published as Linked Data (LD). However, the “publish first, refine later” philosophy leads to various quality problems arising in the underlying data such as incompleteness, inconsistency and semantic ambiguities. In this article, we describe the current state of Data Quality in the Web of Data along with details of the three papers accepted for the International Journal on Semantic Web and Information Systems' (IJSWIS) Special Issue on Web Data Quality. Additionally, we identify new challenges that are specific to the Web of Data and provide insights into the current progress and future directions for each of those challenges.

Publisher

IGI Global

Subject

Computer Networks and Communications,Information Systems

Reference25 articles.

1. Abedjan, Z., Grütze, T., Jentzsch, A., & Naumann, F. (2014). Profiling and mining RDF data with ProLOD++. In IEEE 30th International Conference on Data Engineering (ICDE), (pp 1198–1201).

2. Crowdsourcing linked data quality assessment.;M.Acosta;12th International Semantic Web Conference (ISWC),2013

3. Batini, C., & Scannapieco, M. (2006). Data Quality: Concepts, Methodologies and Techniques. New York, Inc., Springer-Verlag.

4. Guest Editors' Introduction: Data Quality in the Internet Era

5. Bizer, C. (2007). Quality-Driven Information Filtering in the Context of Web-Based Information Systems. PhD thesis, Freie Universität Berlin.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semantic Enrichment of BIM: The Role of Machine Learning-Based Image Recognition;Buildings;2024-04-17

2. Knowledge Graph Completeness: A Systematic Literature Review;IEEE Access;2021

3. Combining Linked Open Data Similarity and Relatedness for Cross OSN Recommendation;International Journal on Semantic Web and Information Systems;2020-04

4. ML-Based Knowledge Graph Curation: Current Solutions and Challenges;Companion Proceedings of The 2019 World Wide Web Conference;2019-05-13

5. Learn2Clean: Optimizing the Sequence of Tasks for Web Data Preparation;The World Wide Web Conference on - WWW '19;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3