Semantic Enrichment of BIM: The Role of Machine Learning-Based Image Recognition

Author:

Mirarchi Claudio1ORCID,Gholamzadehmir Maryam1ORCID,Daniotti Bruno1ORCID,Pavan Alberto1ORCID

Affiliation:

1. Department of Architecture, Built Environment and Construction Engineering, Politecnico di Milano, 20133 Milano, Italy

Abstract

Building Information Modelling (BIM) revolutionizes the construction industry by digitally simulating real-world entities through a defined and shared semantic structure. However, graphical information included in BIM models often contains more detailed data compared to the corresponding semantic or computable data. This inconsistency creates an asymmetry, where valuable details present in the graphical renderings are absent from the semantic description of the model. Such an issue limits the accuracy and comprehensiveness of BIM models, constraining their full utilization for efficient decision-making and collaboration in the construction process. To tackle this challenge, this paper presents a novel approach that utilizes Machine Learning (ML) to mediate the disparity between graphical and semantic information. The proposed methodology operates by automatically extracting relevant details from graphical information and transforming them into semantically meaningful and computable data. A comprehensive empirical evaluation shows that the presented approach effectively bridges the gap between graphical and computable information with an accuracy of over 80% on average, unlocking the potential for a more accurate representation of information within BIM models and enhancing decision-making and collaboration/utility in construction processes.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3