Combining Linked Open Data Similarity and Relatedness for Cross OSN Recommendation

Author:

Boubenia Mohamed1,Belkhir Abdelkader1,Bouyakoub Fayçal M'hamed1

Affiliation:

1. University of Sciences and Technology Houari Boumediene, Algeria

Abstract

The emergence of online social networks (OSNs) and linked open data (LOD) bring up opportunities to experiment on a new generation of cross-domain recommender systems in which the true benefit of LOD can be exploited, particularly to address the new user problems. In this article, the authors explore the feasibility of combining the two axes of comparison, similarity and relatedness, in LOD space, and introduce a new LOD-based similarity measure. The reason is to take benefit more from LOD to compare general resources, which can be useful in the context of cross-OSN recommendation. Experimental evaluation demonstrates the effectiveness of the proposed approach.

Publisher

IGI Global

Subject

Computer Networks and Communications,Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Linked data-based recommender system using hybrid semantic similarity measure;INTERNATIONAL CONFERENCE ON SCIENTIFIC RESEARCH & INNOVATION (ICSRI 2022);2023

2. A Survey on Semantic Recommendation System based on Linked Open Data(LOD);2022 Fifth College of Science International Conference of Recent Trends in Information Technology (CSCTIT);2022-11-15

3. Spatio-Temporal Feature Encoding for Traffic Accident Detection in VANET Environment;IEEE Transactions on Intelligent Transportation Systems;2022-10

4. Context Aware Recommender Systems: A Novel Approach Based on Matrix Factorization and Contextual Bias;Electronics;2022-03-24

5. The Current State of Linked Data-based Recommender Systems;2021 2nd Information Technology To Enhance e-learning and Other Application (IT-ELA);2021-12-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3