Multi-Agent Actor Critic for Channel Allocation in Heterogeneous Networks

Author:

Zhao Nan1,Liu Zehua1,Cheng Yiqiang1,Tian Chao1

Affiliation:

1. Hubei University of Technology, China

Abstract

Heterogeneous networks (HetNets) can equalize traffic loads and cut down the cost of deploying cells. Thus, it is regarded to be the significant technique of the next-generation communication networks. Due to the non-convexity nature of the channel allocation problem in HetNets, it is difficult to design an optimal approach for allocating channels. To ensure the user quality of service as well as the long-term total network utility, this article proposes a new method through utilizing multi-agent reinforcement learning. Moreover, for the purpose of solving computational complexity problem caused by the large action space, deep reinforcement learning is put forward to learn optimal policy. A nearly-optimal solution with high efficiency and rapid convergence speed could be obtained by this learning method. Simulation results reveal that this new method has the best performance than other methods.

Publisher

IGI Global

Subject

Computer Networks and Communications

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fuzzy Learning-Based Electric Measurement Data Circulation Monitoring and Security Risk Anomaly Evaluation;International Journal of Mobile Computing and Multimedia Communications;2024-07-17

2. A System to Privacy Preserving and Guarantee Worker Rewards in Blockchain-Based Crowdsourcing;2023 9th International Conference on Web Research (ICWR);2023-05-03

3. Multi-Agent Reinforcement Learning-Based Resource Management for V2X Communication;International Journal of Mobile Computing and Multimedia Communications;2023-03-22

4. Deep Reinforcement Learning for Task Offloading and Power Allocation in UAV-assisted MEC System;International Journal of Mobile Computing and Multimedia Communications;2021-10

5. Social entrepreneurship research in the Greater China Region: a scoping review and new research framework;Journal of Asian Public Policy;2020-08-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3