Affiliation:
1. Hubei University of Technology, China
Abstract
Heterogeneous networks (HetNets) can equalize traffic loads and cut down the cost of deploying cells. Thus, it is regarded to be the significant technique of the next-generation communication networks. Due to the non-convexity nature of the channel allocation problem in HetNets, it is difficult to design an optimal approach for allocating channels. To ensure the user quality of service as well as the long-term total network utility, this article proposes a new method through utilizing multi-agent reinforcement learning. Moreover, for the purpose of solving computational complexity problem caused by the large action space, deep reinforcement learning is put forward to learn optimal policy. A nearly-optimal solution with high efficiency and rapid convergence speed could be obtained by this learning method. Simulation results reveal that this new method has the best performance than other methods.
Subject
Computer Networks and Communications
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献