Fuzzy Learning-Based Electric Measurement Data Circulation Monitoring and Security Risk Anomaly Evaluation

Author:

Li Xinjia1,Li Yahong2,Fang Lei1,Liu Liwei2,Wang Ke3

Affiliation:

1. State Grid Jiangsu Electric Power Co., Ltd., China

2. State Grid Cyber Security Technology Co., Ltd., China

3. North China Electric Power University, China

Abstract

With the circulation of massive electric measurement data, data anomaly caused by security attacks imposes security risks on reliable operation of smart grid. Long short-term memory (LSTM) based data circulation monitoring and security risk anomaly evaluation has been intensively studied. However, some issues remain unsolved, including learning overfitting and large prediction error. In this paper, we investigate fuzzy learning to infer the abnormal level of security risk. In particular, an adaptive grey wolf optimization-LSTM-fuzzy petri network (AGWO-LSTM-FPN) based electrical measurement data circulation monitoring and security risk anomaly evaluation algorithm is proposed. Specifically, AGWO is utilized to optimize LSTM parameter updating and improve traffic prediction accuracy. Furthermore, FPN is combined with multi-dimensional monitoring indicators to enhance anomaly level evaluation. Simulation results illustrate the excellent performance of AGWO-LSTM-FPN.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3