Behind the Scenes of Noninvasive Brain–Computer Interfaces: A Review of Electroencephalography Signals, How They Are Recorded, and Why They Matter

Author:

Pitt Kevin M.1,Brumberg Jonathan S.2,Burnison Jeremy D.3,Mehta Jyutika4,Kidwai Juhi2

Affiliation:

1. Department of Special Education and Communication Disorders, University of Nebraska–Lincoln

2. Department of Speech-Language-Hearing: Sciences & Disorders, University of Kansas, Lawrence

3. Department of Scientific Support, Brain Vision, LLC, Morrisville, NC

4. Department of Communication Sciences & Disorders, Texas Woman's University, Denton

Abstract

Purpose Brain–computer interface (BCI) techniques may provide computer access for individuals with severe physical impairments. However, the relatively hidden nature of BCI control obscures how BCI systems work behind the scenes, making it difficult to understand “how” electroencephalography (EEG) records the BCI-related brain signals, “what” brain signals are recorded by EEG, and “why” these signals are targeted for BCI control. Furthermore, in the field of speech-language-hearing, signals targeted for BCI application have been of primary interest to clinicians and researchers in the area of augmentative and alternative communication (AAC). However, signals utilized for BCI control reflect sensory, cognitive, and motor processes, which are of interest to a range of related disciplines, including speech science. Method This tutorial was developed by a multidisciplinary team emphasizing primary and secondary BCI-AAC–related signals of interest to speech-language-hearing. Results An overview of BCI-AAC–related signals are provided discussing (a) “how” BCI signals are recorded via EEG; (b) “what” signals are targeted for noninvasive BCI control, including the P300, sensorimotor rhythms, steady-state evoked potentials, contingent negative variation, and the N400; and (c) “why” these signals are targeted. During tutorial creation, attention was given to help support EEG and BCI understanding for those without an engineering background. Conclusion Tutorials highlighting how BCI-AAC signals are elicited and recorded can help increase interest and familiarity with EEG and BCI techniques and provide a framework for understanding key principles behind BCI-AAC design and implementation.

Publisher

American Speech Language Hearing Association

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3