The Fermionic Quantum Emulator
Author:
Rubin Nicholas C.1, Gunst Klaas2, White Alec2, Freitag Leon2, Throssell Kyle2, Chan Garnet Kin-Lic3, Babbush Ryan1, Shiozaki Toru2
Affiliation:
1. Google Quantum AI, Mountain View, CA, 94043 2. Quantum Simulation Technologies, Inc., Cambridge, MA 02139 3. Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena CA 91125
Abstract
The fermionic quantum emulator (FQE) is a collection of protocols for emulating quantum dynamics of fermions efficiently taking advantage of common symmetries present in chemical, materials, and condensed-matter systems. The library is fully integrated with the OpenFermion software package and serves as the simulation backend. The FQE reduces memory footprint by exploiting number and spin symmetry along with custom evolution routines for sparse and dense Hamiltonians, allowing us to study significantly larger quantum circuits at modest computational cost when compared against qubit state vector simulators. This release paper outlines the technical details of the simulation methods and key advantages.
Publisher
Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften
Subject
Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics
Reference42 articles.
1. Daniel S Abrams and Seth Lloyd. Simulation of Many-Body Fermi Systems on a Universal Quantum Computer. Phys. Rev. Lett., 79 (13): 4, 1997. https://doi.org/10.1103/PhysRevLett.79.2586. 2. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users' Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, third edition, 1999. ISBN 0-89871-447-8 (paperback). URL https://www.netlib.org/lapack/lug/. 3. Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Sergio Boixo, Michael Broughton, Bob B. Buckley, David A. Buell, Brian Burkett, Nicholas Bushnell, Yu Chen, Zijun Chen, Benjamin Chiaro, Roberto Collins, William Courtney, Sean Demura, Andrew Dunsworth, Edward Farhi, Austin Fowler, Brooks Foxen, Craig Gidney, Marissa Giustina, Rob Graff, Steve Habegger, Matthew P. Harrigan, Alan Ho, Sabrina Hong, Trent Huang, William J. Huggins, Lev Ioffe, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Cody Jones, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Seon Kim, Paul V. Klimov, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Pavel Laptev, Mike Lindmark, Erik Lucero, Orion Martin, John M. Martinis, Jarrod R. McClean, Matt McEwen, Anthony Megrant, Xiao Mi, Masoud Mohseni, Wojciech Mruczkiewicz, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Hartmut Neven, Murphy Yuezhen Niu, Thomas E. O’Brien, Eric Ostby, Andre Petukhov, Harald Putterman, Chris Quintana, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Doug Strain, Kevin J. Sung, Marco Szalay, Tyler Y. Takeshita, Amit Vainsencher, Theodore White, Nathan Wiebe, Z. Jamie Yao, Ping Yeh, and Adam Zalcman. Hartree-fock on a superconducting qubit quantum computer. Science, 369 (6507): 1084–1089, 2020. ISSN 0036-8075. 10.1126/science.abb9811. URL https://science.sciencemag.org/content/369/6507/1084. 4. Alan Aspuru-Guzik, Anthony D Dutoi, Peter J Love, and Martin Head-Gordon. Simulated Quantum Computation of Molecular Energies. Science, 309 (5741): 1704, 2005. 10.1126/science.1113479. 5. Gregory J. Atchity and Klaus Ruedenberg. Orbital transformations and configurational transformations of electronic wavefunctions. J. Chem. Phys., 111 (7): 2910–2920, 1999. 10.1063/1.479573. URL https://doi.org/10.1063/1.479573.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|