Quantum computation of stopping power for inertial fusion target design

Author:

Rubin Nicholas C.1,Berry Dominic W.2,Kononov Alina3,Malone Fionn D.1,Khattar Tanuj1,White Alec4,Lee Joonho15,Neven Hartmut1,Babbush Ryan1ORCID,Baczewski Andrew D.3ORCID

Affiliation:

1. Google Quantum AI, Google Research, Venice, CA 90291

2. School of Mathematical and Physical Sciences, Macquarie University, Sydney, NSW 2109, Australia

3. Quantum Algorithms and Applications Collaboratory, Sandia National Laboratories, Albuquerque, NM 87185

4. Quantum Simulation Technologies Inc., Boston, MA 02135

5. Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138

Abstract

Stopping power is the rate at which a material absorbs the kinetic energy of a charged particle passing through it—one of many properties needed over a wide range of thermodynamic conditions in modeling inertial fusion implosions. First-principles stopping calculations are classically challenging because they involve the dynamics of large electronic systems far from equilibrium, with accuracies that are particularly difficult to constrain and assess in the warm-dense conditions preceding ignition. Here, we describe a protocol for using a fault-tolerant quantum computer to calculate stopping power from a first-quantized representation of the electrons and projectile. Our approach builds upon the electronic structure block encodings of Su et al. [ PRX Quant. 2 , 040332 (2021)], adapting and optimizing those algorithms to estimate observables of interest from the non-Born–Oppenheimer dynamics of multiple particle species at finite temperature. We also work out the constant factors associated with an implementation of a high-order Trotter approach to simulating a grid representation of these systems. Ultimately, we report logical qubit requirements and leading-order Toffoli costs for computing the stopping power of various projectile/target combinations relevant to interpreting and designing inertial fusion experiments. We estimate that scientifically interesting and classically intractable stopping power calculations can be quantum simulated with roughly the same number of logical qubits and about one hundred times more Toffoli gates than is required for state-of-the-art quantum simulations of industrially relevant molecules such as FeMoco or P450.

Funder

Australian Research Council Discovery Project

DOE | NNSA | Sandia National Laboratories

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3