Evaluating the evidence for exponential quantum advantage in ground-state quantum chemistry

Author:

Lee SeunghoonORCID,Lee JoonhoORCID,Zhai Huanchen,Tong YuORCID,Dalzell Alexander M.,Kumar Ashutosh,Helms Phillip,Gray Johnnie,Cui Zhi-HaoORCID,Liu Wenyuan,Kastoryano Michael,Babbush Ryan,Preskill John,Reichman David R.,Campbell Earl T.,Valeev Edward F.,Lin Lin,Chan Garnet Kin-LicORCID

Abstract

AbstractDue to intense interest in the potential applications of quantum computing, it is critical to understand the basis for potential exponential quantum advantage in quantum chemistry. Here we gather the evidence for this case in the most common task in quantum chemistry, namely, ground-state energy estimation, for generic chemical problems where heuristic quantum state preparation might be assumed to be efficient. The availability of exponential quantum advantage then centers on whether features of the physical problem that enable efficient heuristic quantum state preparation also enable efficient solution by classical heuristics. Through numerical studies of quantum state preparation and empirical complexity analysis (including the error scaling) of classical heuristics, in both ab initio and model Hamiltonian settings, we conclude that evidence for such an exponential advantage across chemical space has yet to be found. While quantum computers may still prove useful for ground-state quantum chemistry through polynomial speedups, it may be prudent to assume exponential speedups are not generically available for this problem.

Funder

DOE | Office of Science

Simons Foundation

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Reference38 articles.

1. Lee, S., Lee, J. & Chan, G. K.-L. Collection of papers referring exponential quantum advantage in quantum chemistry. GitHub https://github.com/seunghoonlee89/Refs_EQA_GSQC (2023).

2. Kempe, J., Kitaev, A. & Regev, O. The complexity of the local hamiltonian problem. Siam J. Comput. 35, 1070–1097 (2006).

3. Kitaev, A. Y. Quantum measurements and the abelian stabilizer problem. arXiv preprint quant-ph/9511026 (1995).

4. Aspuru-Guzik, A., Dutoi, A. D., Love, P. J. & Head-Gordon, M. Simulated quantum computation of molecular energies. Science 309, 1704–1707 (2005).

5. Lin, L. & Tong, Y. Heisenberg-limited ground-state energy estimation for early fault-tolerant quantum computers. PRX Quantum 3, 010318 (2022).

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3