A novel artificial neural network model for forecasting electricity demand enhanced with population-weighted temperature mean and the unemployment rate
Author:
Publisher
Turkish Journal of Engineering
Reference60 articles.
1. Ahmed, T., Muttaqi, K. M., & Agalgaonkar, A. P. (2012). Climate change impacts on electricity demand in the State of New South Wales, Australia. Applied Energy, 98, 376–383. https://doi.org/10.1016/j.apenergy.2012.03.059
2. Ahmed, T., Vu, D. H., Muttaqi, K. M., & Agalgaonkar, A. P. (2018). Load forecasting under changing climatic conditions for the city of Sydney, Australia. Energy, 142, 911–919. https://doi.org/10.1016/j.energy.2017.10.070
3. Akay, D., & Atak, M. (2007). Grey prediction with rolling mechanism for electricity demand forecasting of Turkey. Energy, 32(9), 1670–1675. https://doi.org/10.1016/j.energy.2006.11.014
4. Al-Bajjali, S. K., & Shamayleh, A. Y. (2018). Estimating the determinants of electricity consumption in Jordan. Energy, 147, 1311–1320. https://doi.org/10.1016/j.energy.2018.01.010
5. AL-Musaylh, M. S., Deo, R. C., Adamowski, J. F., & Li, Y. (2019). Short-term electricity demand forecasting using machine learning methods enriched with ground-based climate and ECMWF Reanalysis atmospheric predictors in southeast Queensland, Australia. Renewable and Sustainable Energy Reviews, 113. https://doi.org/10.1016/j.rser.2019.109293
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep Learning Algorithm Forecasting the Unemployment Rates in the Central European Countries;Economics and Business;2024-04-30
2. Solar photovoltaic generation and electrical demand forecasting using multi-objective deep learning model for smart grid systems;Cogent Engineering;2024-04-20
3. A lasso regression-based forecasting model for daily gasoline consumption: Türkiye Case;Turkish Journal of Engineering;2024-01-19
4. A Novel Deep Learning‐Based Data Analysis Model for Solar Photovoltaic Power Generation and Electrical Consumption Forecasting in the Smart Power Grid;Applied Computational Intelligence and Soft Computing;2024-01
5. Short-Term Power Load Forecasting and Correlation Analysis of Meteorological Factors and Summer Electricity Demand: A Case Study of Chongqing, Fujian, and Anhui in China;2023 2nd Asian Conference on Frontiers of Power and Energy (ACFPE);2023-10-20
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3