Short-term electricity demand forecasting using machine learning methods enriched with ground-based climate and ECMWF Reanalysis atmospheric predictors in southeast Queensland, Australia

Author:

AL-Musaylh Mohanad S.,Deo Ravinesh C.,Adamowski Jan F.,Li Yan

Funder

United Nations

Ministry of Higher Education and Scientific Research

Publisher

Elsevier BV

Subject

Renewable Energy, Sustainability and the Environment

Reference94 articles.

1. Resolution adopted by the general assembly on 25 september 2015;Assembly,2015

2. Energy transformed: sustainable energy solutions for climate change mitigation;Smith,2007

3. Australian electricity market analysis report to 2020 and 2030;Brinsmead,2014

4. Forecasting regional electricity load based on recurrent support vector machines with genetic algorithms;Pai;Electr Power Syst Res,2005

5. The Australian Energy Market Operator is responsible for operating Australia's largest gas and electricity markets and power systems];AEMO. Aggregated Price and Demand Data - Historical,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3