A Novel Deep Learning‐Based Data Analysis Model for Solar Photovoltaic Power Generation and Electrical Consumption Forecasting in the Smart Power Grid

Author:

Mbey Camille Franklin,Yem Souhe Felix GhislainORCID,Foba Kakeu Vinny JuniorORCID,Boum Alexandre TeplairaORCID

Abstract

With the installation of solar panels around the world and the permanent fluctuation of climatic factors, it is, therefore, important to provide the necessary energy in the electrical network in order to satisfy the electrical demand at all times for smart grid applications. This study first presents a comprehensive and comparative review of existing deep learning methods used for smart grid applications such as solar photovoltaic (PV) generation forecasting and power consumption forecasting. In this work, electrical consumption forecasting is long term and will consider smart meter data and socioeconomic and demographic data. Photovoltaic power generation forecasting is short term by considering climatic data such as solar irradiance, temperature, and humidity. Moreover, we have proposed a novel hybrid deep learning method based on multilayer perceptron (MLP), long short‐term memory (LSTM), and genetic algorithm (GA). We then simulated all the deep learning methods on a climate and electricity consumption dataset for the city of Douala. Electrical consumption data are collected from smart meters installed at consumers in Douala. Climate data are collected at the climate management center in the city of Douala. The results obtained show the outperformance of the proposed optimized method based on deep learning in the both electrical consumption and PV power generation forecasting and its superiority compared to basic methods of deep learning such as support vector machine (SVM), MLP, recurrent neural network (RNN), and random forest algorithm (RFA).

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3