Sources and sinks of methane in sea ice

Author:

Jacques Caroline1,Sapart Célia J.12,Fripiat François1,Carnat Gauthier1,Zhou Jiayun13,Delille Bruno3,Röckmann Thomas2,van der Veen Carina2,Niemann Helge456,Haskell Tim7,Tison Jean-Louis1

Affiliation:

1. Laboratoire de Glaciologie, Université libre de Bruxelles, Bruxelles, Belgium

2. Institute for Marine and Atmospheric research Utrecht (IMAU), Utrecht University, Utrecht, the Netherlands

3. Unité d’Océanographie Chimique, Université de Liège, Liège, Belgium

4. Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Texel, the Netherlands

5. Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands

6. CAGE—Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT The Arctic University of Norway, Tromsø, Norway

7. Callaghan Innovation, Wellington, New Zealand

Abstract

We report on methane (CH4) stable isotope (δ13C and δ2H) measurements from landfast sea ice collected near Barrow (Utqiagvik, Alaska) and Cape Evans (Antarctica) over the winter-to-spring transition. These measurements provide novel insights into pathways of CH4 production and consumption in sea ice. We found substantial differences between the two sites. Sea ice overlying the shallow shelf of Barrow was supersaturated in CH4 with a clear microbial origin, most likely from methanogenesis in the sediments. We estimated that in situ CH4 oxidation consumed a substantial fraction of the CH4 being supplied to the sea ice, partly explaining the large range of isotopic values observed (δ13C between –68.5 and –48.5 ‰ and δ2H between –246 and –104 ‰). Sea ice at Cape Evans was also supersaturated in CH4 but with surprisingly high δ13C values (between –46.9 and –13.0 ‰), whereas δ2H values (between –313 and –113 ‰) were in the range of those observed at Barrow. These are the first measurements of CH4 isotopic composition in Antarctic sea ice. Our data set suggests a potential combination of a hydrothermal source, in the vicinity of the Mount Erebus, with aerobic CH4 formation in sea ice, although the metabolic pathway for the latter still needs to be elucidated. Our observations show that sea ice needs to be considered as an active biogeochemical interface, contributing to CH4 production and consumption, which disputes the standing paradigm that sea ice is an inert barrier passively accumulating CH4 at the ocean-atmosphere boundary.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3