Continuous-flow isotope ratio mass spectrometry method for carbon and hydrogen isotope measurements on atmospheric methane
-
Published:2010-12-14
Issue:6
Volume:3
Page:1707-1721
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Brass M.,Röckmann T.
Abstract
Abstract. We describe a continuous-flow isotope ratio mass spectrometry (CF-IRMS) technique for high-precision δD and δ13C measurements of atmospheric methane on 40 mL air samples. CH4 is separated from other air components by utilizing purely physical processes based on temperature, time and mechanical valve switching. Chemical agents are avoided. Trace amounts of interfering compounds can be separated by gas chromatography after pre-concentration of the CH4 sample. The purified sample is then either combusted to CO2 or pyrolyzed to H2 for stable isotope measurement. Apart from connecting samples and refilling liquid nitrogen as coolant the system is fully automated and allows an unobserved, continuous analysis of samples. The analytical system has been used for analysis of air samples with CH4 mixing ratios between ~100 and ~10 000 ppb, for higher mixing ratios samples usually have to be diluted.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference58 articles.
1. Behrens, M., Schmitt, J., Richter, K. U., Bock, M., Richter, U. C., Levin, I., and Fischer, H.: A gas chromatography/combustion/isotope ratio mass spectrometry system for high-precision delta C-13 measurements of atmospheric methane extracted from ice core samples, Rapid Commun. Mass Spectrom., 22, 3261–3269, 2008. 2. Bergamaschi, P., Schupp, M., and Harris, G. W.: High-precision direct measurements of 13CH4/12CH4 and CH3D/12CH4 ratios in atmospheric methane sources by means of a long-path tunable diode laser absorbtion spectrometer, Appl. Opt., 33, No. 33, 7704–7716, 1994. 3. Bergamaschi, P., Brenninkmeijer, C. A. M., Hahn, M., Röckmann, T., Scharffe, D. H., Crutzen, P. J., Elansky, N. F., Belikov, I. B., Trivett, N. B. A., and Worthy, D. E. J.:: Isotope analysis based source identification for atmospheric CH4 and CO across Russia using the Trans-Siberian railroad, J. Geophys. Res., D7, 8227–8235, 1998. 4. Bergamaschi, P., Bräunlich, M., Marik, T., and Brenninkmeijer, C. A. M.: Measurements of the carbon and hydrogen isotopes of atmospheric methane at Izana, Tenerife: Seasonal cycles and synoptic-scale variations, J. Geophys. Res., 105, 14531–14546, 2000. 5. Bergamaschi, P., Frankenberg, C., Meirink, J. F., Krol, M., Villani, M. G., Houweling, S., Dentener, F., Dlugokencky, E. J., Miller, J. B., Gatti, L. V., Engel, A., and Levin, I.: Inverse modeling of global and regional CH4 emissions using SCIAMACHY satellite retrievals, J. Geophys. Res., 114, D22301, https://doi.org/22310.21029/22009JD012287, 2009.
Cited by
67 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|