The Probable Datum Method (PDM): a technique for estimating the age of origination or extinction of nannoplankton

Author:

Schueth Jonathan D.,Keller Klaus,Bralower Timothy J.,Patzkowsky Mark E.

Abstract

Accurate interpretation of origination and extinction of fossil species is crucial to answering a variety of questions in paleontology. Fossil datums, the observed age of first or last occurrences, are subject to sampling error as a result of preservation and low abundances near range endpoints. This sampling error can cause local range offset, an age difference between the observed first or last occurrence of a species and its true origination or extinction. Here, we develop and test a new technique, the Probable Datum Method (PDM), that can be used to assess the extent of local range offset for nannofossil species. The PDM estimates the original abundance of a taxon and its probable true age of first or last occurrence. The PDM uses a model in which original abundance is related to count abundance through preservation and the counting process. This model is empirically parameterized, including an experimental determination of false positive and error rates of a nannofossil count. The model is simulated then inverted to estimate likely original abundance and true datum age from count abundance data. We first test the PDM in a positive control experiment with known parameter values. This experiment shows that the PDM is robust and returns known values accurately. Next we apply the method to the origination of nannoplankton after the Cretaceous/Paleogene boundary to test whether first occurrences were synchronous between widely spaced locations. The PDM results suggest that observed diachrony of K/Pg originations cannot be explained by the effects of local range offset; rather, in some cases they indicate truly diachronous first occurrences between localities. Although the technique was developed to analyze nannoplankton ranges, the statistical nature of the PDM, its experimentally derived parameters, and its parsimonious nature should make it applicable to many micropaleontological studies that interpret patterns of origination and extinction.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3