INCORPORATING INFORMATION ON VARYING SEDIMENTATION RATES INTO PALEONTOLOGICAL ANALYSES

Author:

HOHMANN NIKLAS1

Affiliation:

1. Friedrich-Alexander-Universität Erlangen-Nürnberg, GeoZentrum Nordbayern, Institut für Paläoumwelt, 91054 Erlangen, Germany

Abstract

ABSTRACT Stratigraphic changes in the clustering of first or last taxon occurrences are a joint expression of evolutionary, ecological, taphonomic, and sedimentological processes. Sedimentation rates control the degree of sedimentary dilution and condensation and thus alter the time contained in a given thickness of sediment. However, it remains poorly explored quantitatively how distinct the stratigraphic patterns in the first and last occurrences can be under different deposition models with a constant thickness of accumulated sediment. Here, I present an algorithm that translates ecological or evolutionary signals between time and stratigraphic height. It is implemented for R Software as the package DAIME and complemented by tools to quantify the uncertainties associated with the construction of deposition models. By modeling the stratigraphic expression of the K/Pg extinction and an earlier extinction pulse potentially linked to Deccan volcanism on Seymour Island under varying sedimentation rates, I show that (1) clustering of last occurrences ∼ 250 kyr prior to the K/Pg boundary can be equally explained by a stronger earlier extinction pulse or prolonged intervals with reduced sediment accumulation rate, but (2) when the temporal variability in sedimentation rate is known, the most plausible extinction dynamics can still be identified. The approach is applicable for any type of information transported as a part of the sedimentary record (e.g., fossils or trace elements) or data derived from it (e.g., isotope ratios and rates of morphological evolution).

Publisher

Society for Sedimentary Geology

Subject

Paleontology,Ecology, Evolution, Behavior and Systematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3