Energy-Efficient Slithering Gait Exploration for a Snake-Like Robot Based on Reinforcement Learning

Author:

Bing Zhenshan1,Lemke Christian2,Jiang Zhuangyi1,Huang Kai3,Knoll Alois1

Affiliation:

1. Department of Computer Science, Technical University of Munich, Germany

2. Department of Computer Science, Ludwig Maximilian University of Munich, Germany

3. School of Data and Computer Science, Sun Yat-sen University, China

Abstract

Similar to their counterparts in nature, the flexible bodies of snake-like robots enhance their movement capability and adaptability in diverse environments. However, this flexibility corresponds to a complex control task involving highly redundant degrees of freedom, where traditional model-based methods usually fail to propel the robots energy-efficiently. In this work, we present a novel approach for designing an energy-efficient slithering gait for a snake-like robot using a model-free reinforcement learning (RL) algorithm. Specifically, we present an RL-based controller for generating locomotion gaits at a wide range of velocities, which is trained using the proximal policy optimization (PPO) algorithm. Meanwhile, a traditional parameterized gait controller is presented and the parameter sets are optimized using the grid search and Bayesian optimization algorithms for the purposes of reasonable comparisons. Based on the analysis of the simulation results, we demonstrate that this RL-based controller exhibits very natural and adaptive movements, which are also substantially more energy-efficient than the gaits generated by the parameterized controller. Videos are shown at https://videoviewsite.wixsite.com/rlsnake .

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3