Simulating the filament morphology in electrochemical metallization cells

Author:

Buttberg MilanORCID,Valov IliaORCID,Menzel Stephan

Abstract

Abstract Electrochemical metallization (ECM) cells are based on the principle of voltage controlled formation or dissolution of a nanometer-thin metallic conductive filament (CF) between two electrodes separated by an insulating material, e.g. an oxide. The lifetime of the CF depends on factors such as materials and biasing. Depending on the lifetime of the CF—from microseconds to years—ECM cells show promising properties for use in neuromorphic circuits, for in-memory computing, or as selectors and memory cells in storage applications. For enabling those technologies with ECM cells, the lifetime of the CF has to be controlled. As various authors connect the lifetime with the morphology of the CF, the key parameters for CF formation have to be identified. In this work, we present a 2D axisymmetric physical continuum model that describes the kinetics of volatile and non-volatile ECM cells, as well as the morphology of the CF. It is shown that the morphology depends on both the amplitude of the applied voltage signal and CF-growth induced mechanical stress within the oxide layer. The model is validated with previously published kinetic measurements of non-volatile Ag/SiO2/Pt and volatile Ag/HfO2/Pt cells and the simulated CF morphologies are consistent with previous experimental CF observations.

Funder

Deutsche Forschungsgemeinschaft

MEMQuD

Bundesministerium für Bildung und Forschung

Publisher

IOP Publishing

Subject

General Medicine

Reference67 articles.

1. Overview of emerging nonvolatile memory;Meena;Nanoscale Res. Lett.,2014

2. Polarity-dependent memory switching and behaviour of Ag dendrite in Ag-photodoped amorphous As2S3 films;Hirose;J. Appl. Phys.,1976

3. Applications of programmable resistance changes in metal-doped chalcogenides;Kozicki;Electrochem. Soc.,1999

4. Conductive bridging RAM (CBRAM): an emerging non-volatile memory technology scalable to sub 20 nm;Kund,2005

5. Comprehensive modeling of electrochemical metallization memory cells (online first);Menzel;J. Comput. Electron.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3