Abstract
Abstract
Advancements in miniaturisation and new capabilities of implantable devices impose a need for the development of compact, hermetic, and CMOS-compatible micro packaging methods. Gold-tin-based eutectic bonding presents the potential for achieving low-footprint seals with low permeability to moisture at process temperatures below 350 ∘C. This work describes a method for the deposition of Au:Sn eutectic alloy frames by sequential electroplating from commercially available solutions. Frames were bonded on the chip-level in the process of eutectic bonding. Bond quality was characterised through shear force measurements, scanning electron microscopy, visual inspection, and immersion tests. Characterisation of seals geometry, solder thickness, and bonding process parameters was evaluated, along with toxicity assessment of bonding layers to the human fibroblast cells. With a successful bond yield of over 70% and no cytotoxic effect, Au:Sn eutectic bonding appears as a suitable method for the protection of integrated circuitry in implantable applications.
Funder
Engineering and Physical Sciences Research Council
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Electronic, Optical and Magnetic Materials
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献