Switching performance of bistable membranes activated with integrated piezoelectric thin film transducers

Author:

Dorfmeister MORCID,Kössl B,Schneider M,Pfusterschmied G,Schmid U

Abstract

Abstract In this paper we report on the fabrication of bistable micro electromechanical systems (MEMS) membranes, which have diameters in the range of 600–800 µm, a total thickness of 3.13 µm and feature integrated low power piezoelectric transducers based on aluminium nitride. To estimate the impact of the membrane asymmetry due to the integrated piezoelectric transducers, an asymmetric constant in the potential energy calculation of the bistable system is introduced, thus enabling a proper theoretical prediction of the membrane behaviour. To switch between the two bistable ground states, rectangular pulses with frequencies in the range of 50–100 kHz and a peak-to-peak voltage of 30 V pp are applied. Two different actuation schemes were investigated, whereas one shows positive and the other negative pulse amplitudes. With a Laser-Doppler Vibrometer the velocity of the membranes during the bistable switching process is measured and integrated over time to calculate the membrane displacement in the centre. FFT (fast Fourier transform) spectra of an applied broadband white noise signal were determined in both ground states and showed a strongly decreased dominant resonance frequency in the lower ground state. The results also showed, that the asymmetry of the system causes different switching behaviours for each bistable ground state, whereas it requires less energy to switch from the lower to the upper ground state. Furthermore, it was demonstrated that a minimum of two pulses are needed for switching when using positive rectangular pulses of 30 V pp in contrast to four when applying negative pulses. The pulse frequency causing switching was in the range of 60–110 kHz, strongly depending on the geometry and applied signal scheme. Additionally, a positive voltage offset applied to the pulse signal characteristics resulted in both a wider range of frequencies suitable for switching and in a decrease of the dominant resonance frequency, which is also beneficial for the switching process and indicates the potential for efficient switching of bistable MEMS membranes.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3