Bayesian inversion for electromyography using low-rank tensor formats

Author:

Rörich AnnaORCID,Werthmann Tim A.ORCID,Göddeke Dominik,Grasedyck Lars

Abstract

Abstract The reconstruction of the structure of biological tissue using electromyographic (EMG) data is a non-invasive imaging method with diverse medical applications. Mathematically, this process is an inverse problem. Furthermore, EMG data are highly sensitive to changes in the electrical conductivity that describes the structure of the tissue. Modeling the inevitable measurement error as a stochastic quantity leads to a Bayesian approach. Solving the discretized Bayesian inverse problem means drawing samples from the posterior distribution of parameters, e.g., the conductivity, given measurement data. Using, e.g., a Metropolis–Hastings algorithm for this purpose involves solving the forward problem for different parameter combinations which requires a high computational effort. Low-rank tensor formats can reduce this effort by providing a data-sparse representation of all occurring linear systems of equations simultaneously and allow for their efficient solution. The application of Bayes’ theorem proves the well-posedness of the Bayesian inverse problem. The derivation and proof of a low-rank representation of the forward problem allow for the precomputation of all solutions of this problem under certain assumptions, resulting in an efficient and theory-based sampling algorithm. Numerical experiments support the theoretical results, but also indicate that a high number of samples is needed to obtain reliable estimates for the parameters. The Metropolis–Hastings sampling algorithm, using the precomputed forward solution in a tensor format, draws this high number of samples and therefore enables solving problems which are infeasible using classical methods.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Applied Mathematics,Computer Science Applications,Mathematical Physics,Signal Processing,Theoretical Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3