Approximation and sampling of multivariate probability distributions in the tensor train decomposition

Author:

Dolgov Sergey,Anaya-Izquierdo Karim,Fox Colin,Scheichl Robert

Abstract

Abstract General multivariate distributions are notoriously expensive to sample from, particularly the high-dimensional posterior distributions in PDE-constrained inverse problems. This paper develops a sampler for arbitrary continuous multivariate distributions that is based on low-rank surrogates in the tensor train format, a methodology that has been exploited for many years for scalable, high-dimensional density function approximation in quantum physics and chemistry. We build upon recent developments of the cross approximation algorithms in linear algebra to construct a tensor train approximation to the target probability density function using a small number of function evaluations. For sufficiently smooth distributions, the storage required for accurate tensor train approximations is moderate, scaling linearly with dimension. In turn, the structure of the tensor train surrogate allows sampling by an efficient conditional distribution method since marginal distributions are computable with linear complexity in dimension. Expected values of non-smooth quantities of interest, with respect to the surrogate distribution, can be estimated using transformed independent uniformly-random seeds that provide Monte Carlo quadrature or transformed points from a quasi-Monte Carlo lattice to give more efficient quasi-Monte Carlo quadrature. Unbiased estimates may be calculated by correcting the transformed random seeds using a Metropolis–Hastings accept/reject step, while the quasi-Monte Carlo quadrature may be corrected either by a control-variate strategy or by importance weighting. We show that the error in the tensor train approximation propagates linearly into the Metropolis–Hastings rejection rate and the integrated autocorrelation time of the resulting Markov chain; thus, the integrated autocorrelation time may be made arbitrarily close to 1, implying that, asymptotic in sample size, the cost per effectively independent sample is one target density evaluation plus the cheap tensor train surrogate proposal that has linear cost with dimension. These methods are demonstrated in three computed examples: fitting failure time of shock absorbers; a PDE-constrained inverse diffusion problem; and sampling from the Rosenbrock distribution. The delayed rejection adaptive Metropolis (DRAM) algorithm is used as a benchmark. In all computed examples, the importance weight-corrected quasi-Monte Carlo quadrature performs best and is more efficient than DRAM by orders of magnitude across a wide range of approximation accuracies and sample sizes. Indeed, all the methods developed here significantly outperform DRAM in all computed examples.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability,Theoretical Computer Science

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3