Computing tensor operator exponentials within low‐rank tensor formats with application to the parameter‐dependent multigrid method

Author:

Grasedyck Lars1,Werthmann Tim A.1

Affiliation:

1. Institut für Geometrie und Praktische Mathematik RWTH Aachen University Templergraben 55 D-52056 Aachen Germany

Abstract

AbstractUncertainties in physical models can lead to parameter‐dependent linear systems. The representation and solution of these systems are an important task in numerical mathematics. We summarize our previous results on how to represent these systems using low‐rank tensor methods and how to solve these systems using the parameter‐dependent multigrid method. We propose a new approach to compute the tensor operator exponential, by which we mean the matrix exponential applied to a tensor operator, directly within low‐rank tensor formats. This approach is based on classical matrix methods combined with low‐rank arithmetic. The tensor operator exponential within a low‐rank tensor format is used to approximate the inverse diagonal of a low‐rank operator. This approximation is then used as Jacobi smoother for the parameter‐dependent multigrid method. Using this we observe in numerical experiments a grid size independent convergence rate of the multigrid method. Instead of inverting only diagonals of tensor operators, our approach also allows for the inversion of all symmetric positive definite tensor operators.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3