Complementary characterization method of 3D arsenic doping by using medium energy ion scattering

Author:

Woguia L PenlapORCID,Pierre FORCID,Sanchez D F,Marmitt G GORCID,Saghi Z,Jalabert D

Abstract

Abstract We report on a new characterization method of 3D—doping performed by arsenic implantation into FinFET—like nanostructures by using Medium Energy Ion Scattering. Because of its good depth resolution (0.25 nm) at the surface, it is one of techniques of choice suitable to analyse the ultra-shallow doping of thin crystal films. However, with the constraints related to the nanostructures’ geometry and the low lateral resolution of the MEIS beam (0.5 × 1 mm2), we developed an adequate protocol allowing their analysis with this technique. It encompasses three different geometries to account for the MEIS spectra of the arsenic implanted in each part of the nanostructures. The originality of the protocol is that, according to the chosen analysis geometry, the overall spectrum of arsenic is not the same because the contributions of each part of the patterns to its formation are different. By using two of them, we observed double peaks of arsenic. Thanks to 3D deconvolutions performed with PowerMEIS simulations, we were able to identify the contribution of the tops, sidewalls and bottoms in their formation. Thus, by separating the spectrum of the dopants implanted in the Fins (tops + sidewalls) from that of the bottoms, we were able to characterize the 3D doping conformity in the patterns. Two different implantation methods with the associated local doses computed in each single part were investigated. We found that the distribution of the dopants implanted by using the conventional implanter method is very different from that of plasma doping.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3