Machine learning based data driven inkjet printed electronics: jetting prediction for novel inks

Author:

Brishty Fahmida Pervin,Urner Ruth,Grau GerdORCID

Abstract

Abstract Machine learning (ML) as a predictive methodology can potentially reduce the configuration cost and workload of inkjet printing. Inkjet printing has many advantages for additive manufacturing and printed electronics including low cost, scalability, non-contact printing and on-demand customization. Inkjet generates droplets with a piezoelectric dispenser controlled through frequency, voltage pulse and timing parameters. A major challenge is the design of jettable inks and the rapid optimization of stable jetting conditions whilst preventing common problems (no ejection, perturbation, satellite drop, multiple drops, drop breaking, nozzle clogging). Material consuming trial and error experiments are replaced here with a ML based jetting window. A dataset of machine and material properties is created from literature and experimental data. After exploratory data analysis and feature identification, various (linear and non-linear) regression models are compared in detail. The models are trained on 80% of the data and root mean square error (RMSE) is calculated on 20% test data. Simple polynomial relationships between the input and output features yield coarse prediction. Instead, small ensembles of decision trees (DTs) (boosted DTs and random forests) have improved predictive power for drop velocity and radius with RMSE of 0.39 m s−1 and 2.21 µm respectively. The mean absolute percentage error is 3.87%. The models are validated with experimentally collected data for a novel ink where no data points with this ink were included in the training set. Additionally, several classification algorithms are utilized to categorize ink and printer parameters by jetting regime (‘single drop’, ‘multiple drops’, ‘no ejection’). Categorization and regression models are combined to improve overall model prediction. This article demonstrates that ML can be used to predict ink jetting behavior from 11 different ink and printing parameters. Different algorithms are analyzed and the optimal combination of algorithms is identified. It is shown that experimental and literature data can be combined and an initial dataset is created that other reserachers can build on in the future. ML enables efficient material and printing parameter selection speeding up the development of novel ink materials for printed electronics by eliminating jetting experiments that are money, time and material intensive.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3