Characterization of flux pump-charging of high-temperature superconducting coils using coupled numerical models

Author:

Zhou PengboORCID,Ghabeli AsefORCID,Ainslie MarkORCID,Grilli FrancescoORCID

Abstract

Abstract Flux pumps provide a promising solution for contactless charging of high-temperature superconducting (HTS) coils, eliminating the need for bulk current leads and reducing the heat burden for the cryogenic system. Characterizing the nonlinear effects of an HTS coil charged by a flux pump and understanding the dynamics of the charging process is essential for promoting the practical application of flux pumps. Numerical models provide a fast and cost-effective way of achieving this. In this study, we propose a methodology for coupling HTS coil and flux pump models using an electrical circuit, resulting in reduced computation costs. We validate the effectiveness of our approach against the experimental results of an HTS coil charged by a dynamo-type flux pump. Specifically, we obtain the voltage produced by the HTS dynamo using a 3D model based on the minimum electromagnetic entropy production method and apply this voltage to the load HTS coil using a T A formulation finite-element method model coupled via an electrical circuit. The simulated charging current shows good agreement with experimental observations, validating our modeling strategy. The results demonstrate that the flux flow state in the HTS coil is the primary factor limiting the charging performance of the HTS dynamo as the charging current approaches the coil’s critical current. Furthermore, based on the simulation, we demonstrate that, when using flux pumps, it is advisable to leave a margin between the operating current and the critical current of the coil. Overall, our approach has the potential to be applied to HTS coils charged by any device.

Funder

State Key Laboratory of Rail Transit Vehicle System

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

International Postdoctoral Exchange Fellowship Program between Helmholtz and OCPC

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3