High Temperature Superconducting Flux Pumps for Contactless Energization

Author:

Wen ZezhaoORCID,Zhang HongyeORCID,Mueller Markus

Abstract

The development of superconducting technology has seen continuously increasing interest, especially in the area of clean power systems and electrification of transport with low CO2 emission. Electric machines, as the major producer and consumer of the global electrical energy, have played a critical role in achieving zero carbon emission. The superior current carrying capacity of superconductors with zero DC loss opens the way to the next-generation electric machines characterized by much higher efficiency and power density compared to conventional machines. The persistent current mode is the optimal working condition for a superconducting magnet, and thus the energization of superconducting field windings has become a crucial challenge to be tackled, to which high temperature superconducting (HTS) flux pumps have been proposed as a promising solution. An HTS flux pump enables current injection into a closed superconducting coil wirelessly and provides continuous compensation to offset current decay, avoiding excessive cryogenic losses and sophisticated power electronics facilities. Despite many publications regarding the design and analyses of various types of HTS flux pumps, the practical application of HTS flux pumps in a high-performance superconducting machine has been rarely reported. Therefore, it is of significance to specify the main challenges for building and implementing a reliable HTS flux pump. In addition, the physical mechanisms of distinct HTS flux pumps have caused some confusion, which should be clarified. Above all, a systematic review of the recent development and progress of HTS flux pumps remains lacking. Given the above-mentioned issues, this paper summarized the most up-to-date advances of this emerging technology, clarified the working mechanisms and commonly adopted modeling approaches, presented objective analyses of the applicability of various HTS flux pumps, specified the primary challenges for implementing HTS flux pumps, and proposed useful suggestions to improve this wireless excitation technology. The overall aim of this work is to bring a deep insight into the understanding of HTS flux pumps and provide comprehensive guidance for their future research and applications.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3