Abstract
Abstract
Superconducting magnetic bearings (SMBs) are among the possible new technologies to be incorporated in maglev vehicles. Stacks of high-temperature superconductor (HTS) tapes can be used as an alternative to bulks, because stacks offer better mechanical properties, a better thermal conductivity and a simpler production process. Numerical modeling has been employed as a cost-effective, fast and reliable tool for improving the performance of SMBs. Several scenarios can be simulated with fast and relatively simple 2D models; however, in some cases using 3D models is inevitable. In this study, we use a full 3D model to solve the problem of magnetization of the tape stacks and obtaining the hysteresis force loop between a permanent magnet and the tape stacks. For this purpose, we employ an energy minimization-based method called minimum electromagnetic entropy production in 3D, combined with a homogenization technique and the
J
c
(
B
,
θ
)
dependence of the HTS tape as input. The modeling results agree very well with the experiment both in the zero-field cooled and field-cooled conditions. The presented approach offers significant computational advantages, delivering faster and more efficient results compared to previously proposed 3D methods.
Funder
German Federal Ministry for Economic Affairs and Energy